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In this study, a new shell-type dynamic vibration absorber is presented for
suppressing several modes of vibration of the shallow shell (main shell) under
harmonic load. It consists of a shallow shell (the dynamic absorbing shell),
under the same boundary condition and with the same shape as those of the
main shell, with connecting springs and dampers in the vertical direction between
the main and dynamic absorbing shells. Formulae for an approximate tuning
method for the shell-type dynamic absorber are also presented using the optimum
tuning method for a dynamic absorber in the two-degree-of-freedom system,
obtained by the Den Hartog method. Subsequently, numerical calculations are
presented which demonstrate the usefulness of the shell-type dynamic vibration
absorbers.

7 1998 Academic Press

1. INTRODUCTION

Dynamic vibration absorbers with high control performance, which can be used
to suppress several vibration modes, are required in practical usage. Many ways
of contriving the dynamic vibration absorbers have been considered. However, one
of the most reliable devices for passive control of structures under harmonic
excitation is the tuned mass damper (TMD). The device comprises a mass, a spring
and a damper. TMDs can also be used effectively for controlling the bending
vibration of shell structures [1, 2]. In this paper, a new shell-type dynamic vibration
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absorbing system is proposed. It could be used to control several vibration modes
of the shallow shell (main shell), which can be fitted to the equivalent isotropic
or orthotropic shallow shell outside plate structures with a slight curvature, such
as vessels, ships, roofs of buildings and so on. This shell-type dynamic absorber
consists of a shallow shell (dynamic absorbing shell), under the same boundary
conditions and with the same shape as those of the main shell, with uniformly
distributed connecting springs and dampers in the vertical and two horizontal
directions of the shell. The springs and dampers are situated between the main and
dynamic absorbing shells, as shown in Figure 1. A structural member, with the
shell-type dynamic absorber mentioned above, is like a constrained layered
sandwich plate, which is curved in appearance, but basically different because
mechanical springs and dampers are used instead of the constraining viscoelastic
layer of the sandwich plates. For practical use, concentrated connecting springs
and dampers in the vertical direction are used in this new dynamic absorber. This
shell-type dynamic absorber will be useful for some of the above-mentioned
structure parts.

The authors have proposed new beam-type [3] and plate-type dynamic vibration
absorbers [4] to control the bending vibration of a beam (main beam) and a plate
(main plate). Each consists of a beam (dynamic absorbing beam) and a plate
(dynamic absorbing plate), under the same boundary conditions as those of the
main beam and plate, respectively, with uniformly distributed connecting springs

Figure 1. Shell with the dynamic absorbing shell attached by the uniformly distributed springs
and dampers.
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and dampers. They are situated between the main and dynamic absorbing beams
and between the main and dynamic absorbing plates, respectively. Tuning
methods for the new dynamic absorbers mentioned above were also developed.
Several sets of concentrated connecting springs and dampers arranged at regular
intervals on the dynamic absorbing beam and plate are more practical, and can
be used instead of uniformly distributed ones. In this paper, a tuning method for
the shell-type dynamic absorber with uniformly distributed connecting springs and
dampers is presented using the same procedure as those of the beam-type and
plate-type dynamic absorbers mentioned previously. For its practicality, an
approximate tuning method for the shell-type dynamic absorber with several sets
of concentrated connecting springs and dampers in the vertical direction is also
proposed. Because the dynamic displacements in the two horizontal directions of
the shallow shell are thought to be far smaller than the vertical displacement,
vertical connecting springs and dampers are used exclusively in suppressing the
vibration of the shallow shell. Moreover, to make large-scale problems
manageable, concentrated connecting springs and dampers, which are arranged at
regular intervals in the two horizontal directions, are used.

First, the authors consider two systems consisting of main and dynamic
absorbing shells; one has the uniformly distributed connecting springs and
dampers and the other has concentrated ones in the vertical direction. The
equations of motion of the two systems mentioned above, in the modal
co-ordinates of the main shell, are found to be equivalent to those of a system with
two masses and three springs. Tuning methods for the two shell-type dynamic
vibration absorbers are presented, based on the optimum tuning method of the
dynamic vibration absorber in the two-degree-of-freedom system, which was
obtained by the Den Hartog method [5]. Finally, the usefulness of the new dynamic
vibration absorber proposed here and the applicability of an approximate tuning
method are shown using numerical examples. The influence of the arrangement
of the concentrated connecting springs and dampers on the suppressing effect is
then investigated numerically.

2. EQUATIONS OF MOTION OF SYSTEMS AND THEIR MODAL
EQUATIONS

The two shallow shells shown in Figures 1 and 2 were chosen as the main shells
to which the dynamic absorbing shells are attached by connecting springs and
dampers, under the same boundary condition, and with the same shape as those
of the main shells. Figure 1 shows the main shell with the shell-type dynamic
absorber with uniformly distributed connecting springs and dampers in the vertical
and two horizontal directions. Figure 2 shows the main shell with a dynamic
absorbing shell attached by (J×K) sets of concentrated connecting springs and
dampers in the vertical direction. They are arranged in a rectangular lattice shape
with proper separations, as shown in Figure 3. Equations of motion and modal
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Figure 2. Shell with the dynamic absorbing shell attached by the concentrated springs and
dampers in the vertical direction.

equations were derived based on the following assumptions: (1) displacements of
the shell are small in comparison with its thickness, which is small compared to
the other dimensions of the shell and its radii of curvature; (2) curvatures and rate
of twist of the shell surface are very small, i.e., the shells are platelike shallow ones;
(3) shear strain in each shell as well as the rotatory inertia of a cross-section are
neglected; (4) structural internal damping of a shell is proportional to the velocity

Figure 3. Arrangement of the concentrated springs and dampers.
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of displacement; (5) connecting springs and dampers are effective in the direction
of their axes, but not in the other directions; (6) the masses of the connecting
springs and dampers are neglected; and (7) eigenfunctions of the shells without a
dynamic vibration absorber are used as the mode shape function.

In deriving the equations of motion, the co-ordinates and load conditions shown
in Figures 1 and 2 are used. Equations of motion of the main and dynamic
absorbing shells which are platelike and shallow, with uniform flexural and
extensional rigidities, and uniform mass per unit area, are expressed as follows:

main shell
m1{q̈1}−K1[S1]{q1}+[c]({q̇1}− {q̇2})+ [k]({q1}− {q2})

={P}d(x− r)d(y− s) eiv0t, (1)

dynamic absorbing shell

m2{q̈2}−K2[S2]{q2}+[c]({q̇2}− {q̇1})+ [k]({q2}− {q1})= {0}, (2)

in which

{q1}= {u1, n1, w1}T, {q2}= {u2, v2, w2}T, (3)
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{P}= {Px , Py , Pz}T, (8)

Lx = rx + nry , Ly = ry + nrx , Lxy =(1− n)rxy ,

L0 = r2
x +2(1− n)r2

xy + r2
y +2nrxry . (9)

In the above expressions, u1, v1 and w1 are displacements in the x, y and z directions
of the main shell; u2, v2 and w2 are displacements of the dynamic absorbing shell;
m1 and m2 are masses per unit area of both shells above; D1 and D2 are flexural
rigidities of both shells; K1 and K2 are extensional rigidities of both shells; n is the
Poisson ratio of the material of both shells; kx , ky and kz are spring constants for
uniformly distributed connecting springs in the x, y and z directions; cx , cy and
cz are damping coefficients of the uniformly distributed connecting dampers in the
x, y and z directions; k�z and c̄z are respectively the spring constant of concentrated
connecting springs in the vertical direction, and the damping coefficient of the
concentrated connecting damper in the vertical direction; rx and ry are curvatures
of the shell surface with respect to the x and y axes, and rxy is a rate of twist for
the shell surface; Px , Py and Pz are the amplitudes of the external loads in the x,
y and z directions; v0 is the exciting frequency; d is the Dirac delta function; (r, s)
are co-ordinates of the load position; (am , bn) (m=1, 2, . . . , J, n=1, 2, . . . , K)
are position co-ordinates of the concentrated connecting springs and dampers.

The eigenfunctions of the main and dynamic absorbing shells are expressed by
the same functions when both shells have the same shape and boundary
conditions, and when the following relations with respect to the mass and rigidities
of both shells hold:

m2

m1
= a,

K2

K1
=

D2

D1
= b, (10)

in which a and b are constant.
The normalized eigenfunctions of the ith mode of both shells are denoted by

Ui (x, y), Vi (x, y) and Wi (x, y). The orthogonal condition of normal modes is
given as

g
a

0 g
b

0

{Qi}T{Qj} dx dy=6g · · · i= j
0 · · · i$ j

, (11)

in which

{Qi}= {Ui , Vi , Wi}T, {Qj}= {Uj , Vj , Wj}T. (12)

When the natural circular frequencies of the ith mode of both shells are denoted
by v1i and v2i , respectively, these frequencies and the eigenfunctions satisfy the
following relations:

K1[S1]{Qi}=m1v
2
1i{Qi} (13)

for the main shell and

K2[S2]{Qi}=m2v
2
2i{Qi} (14)
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for the dynamic absorbing shell. Accordingly, the following relation between the
natural circular frequencies of both shells, v1i and v2i , holds:

m1v
2
1i

K1
=

m2v
2
2i

K2
. (15)

The following approximate functions can be used for solutions of equations (1)
and (2):

{q1}= s
M

i=1

{Qi}r1i (t) (16)

for the main shell and

{q2}= s
M

i=1

{Qi}r2i (t) (17)

for the dynamic absorbing shell, in which r1i (t) and r2i (t) are unknown functions
of the time of the main and dynamic absorbing shells.

When damping coefficients and spring constants in three directions are equal
to each other as:

cx = cy = cz = c and kx = ky = kz = k, (18)

substitution of equations (16) and (17) into equations (1) and (2) and their
rearrangement according to equations (11)–(15) give the following modal
equations for the shell-type absorber with uniformly distributed connecting
springs and dampers:

m1r̈1j +m1v
2
1jr1j + c(ṙ1j − ṙ2j )+ k(r1j − r2j)

=
1
g

(PxUj (r, s)+PyVj (r, s)+PzWj (r, s)) eiv0t, (19)

m2r̈2j +m2v
2
2jr2j + c(ṙ2j − ṙ1j )+ k(ṙ2j − r1j )=0, (j=1, 2, . . . , M). (20)

In the case of the shell-type absorber with concentrated connecting springs and
dampers in the vertical direction, the modal equations become:

m1r̈1j +m1v
2
1jr1j +

c̄z

g
s
M

i=1

kij (ṙ1i − ṙ2i )+
k�z

g
s
M

i=1

kij (r1i − r2i )

=
1
g

{PxUj (r, s)+PyVj (r, s)+PzWj (r, s)} eiv0t, (21)

m2r̈2j +m2v
2
2jr2j +

c̄z

g
s
M

i=1

kij (ṙ2i − ṙ1i )+
k�z

g
s
M

i=1

kij (r2i − r1i )=0,

(j=1, 2, . . . , M), (22)
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in which

kij = s
J

m=1

s
K

n=1

Wi (am , bn )Wj (am , bn ). (23)

Let the spring constant k�z and the damping coefficient c̄z be expressed as follows:

k�z =(dx · dy )k	 , c̄z =(dx · dy )c̃, (24)

where k	 and c̃ are the equivalent spring constant and damping coefficient of the
connecting spring and damper distributed uniformly, and dx and dy are the
distances in the x and y directions between the sets of concentrated connecting
springs and dampers. The second and third terms of the left side of equations (21)
and (22) can be expressed as:

c̄z s
M

i=1

kij (ṙ1i − ṙ2i )= c̃ s
M

i=1

Fij (ṙ1i − ṙ2i ),

k�z s
M

i=1

kij (r1i − r2i )= k	 s
M

i=1

Fij (r1i − r2i ), (25)

where

Fij = s
J

m=1

s
K

n=1

Wi (am , bn )Wj (am , bn )dxdy . (26)

When the shells are platelike shallow ones, and intervals dx and dy are small, the
following relation should hold:

Fij 1g
a

0 g
b

0

Wi (x, y)Wj (x, y) dx dy1g
a

0 g
b

0

{Ui , Vi , Wi}{Uj , Vj , Wj}T dx dy.

(27)

The right side of the above equation is approximately equal to the orthogonal
condition of the modes of bending vibration for a shell having equal mass per unit
area. This is because eigenfunctions Uj and Vj (j=1, 2, . . . , M) are so much
smaller than Wj in the free vibration of a platelike shallow shell. Accordingly, Fij

has the following values:

Fij 16g · · · i= j
0 · · · i$ j

. (28)
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Equations (21) and (22) can be rewritten approximately as follows:

m1r̈1j +m1v
2
1jr1j + c̃(ṙ1j − ṙ2j )+ k	 (r1j − r2j )

=
1
g

{PxUj (r, s)+PyVj (r, s)+PzWj (r, s)} eiv0t, (29)

m2r̈2j +m2v
2
2jr2j + c̃(ṙ2j − ṙ1j )+ k	 (r2j − r1j )=0 (j=1, 2, . . . , M). (30)

Modal equations (29) and (30) also have the same form as modal equations (19)
and (20). These modal equations correspond to the equations of motion of the
two-degree-of-freedom system (TDOF system) shown in Figure 4, substituting as
follows:

M1 =m1, M2 =m2, k1 =m1v
2
1j , k2 = k, c2 = c, k3 =m2v

2
2j ,

P0 =
1
g

{PxUj (r, s)+PyVj (r, s)+PzWj (r, s)} (31)

for the shell-type dynamic absorber with uniformly distributed connecting springs
and dampers and

M1 =m1, M2 =m2, k1 =m1v
2
1j , k2 = k	 =

k�z

dxdy
,

c2 = c̃=
c̄z

dxdy
, k3 =m2v

2
2j ,

P0 =
1
g

{PxUj (r, s)+PyVj (r, s)+PzWj (r, s)} (32)

for the shell-type dynamic absorber with concentrated connecting springs and
dampers.

3. TUNING METHOD OF SHELL-TYPE DYNAMIC VIBRATION ABSORBERS

Displacement of the main shell during vibration from the periodic load can be
minimized by controlling the unknown function of time, r1i (t), in equation (16).
Suppose that the exciting frequency of load, v0, is close to the natural circular
frequency of the jth mode of the main shell, v1j , which is not very close to the
other. In this forced vibration, the jth mode is predominant and displacements of
the main shell are given approximately by equation (16) as the following
expression:

{q1}1 {Qj}r1j (t). (33)

Therefore, displacements of the main shell, {q1}, can be approximately minimized
by control of the normal co-ordinate of the jth mode, r1j .

The behavior of r1j is described by the vibration of the main system in the TDOF
system shown in Figure 4. The optimal tuning conditions of the dynamic vibration
absorber (subsystem) in the TDOF system are given by the Den Hartog method
as follows [3].
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(1) The first tuning condition, under which the ordinates of the two fixed points
through which every resonance curve of the main system for varying c2 must pass
are equal, is given as:

k2

mk1
=

1
(1+ m)2 01−

k3

mk11, (34)

in which

m=
M2

M1
. (35)

In this case, the ordinates of the fixed point, Y1p , are

Y1p =
1

(1− k3/mk1)X2+ m

m
, (36)

where Y1p is the non-dimensional amplitude of the main system (magnification
factor) and is denoted by

Y1p =
Re (r1j )

yst
eX2+ m

m
, (37)

in which Re (r1j ) is the real amplitude of r1j and yst is the static displacement to
be given as:

yst =
P0

k1
. (38)

(2) The second tuning condition, under which the maximum point of the
resonance curve is the point mentioned above, is satisfied when the damping
coefficient c2 is given as follows:

c2 =2mhzk1m1 (39)

in which

h2 = 1
2(h

2
P + h2

Q ) (40)

and

h2
P

h2
Q7=

(3+2m)3 2 zm(2+ m)

4(1+ m)3Y1p{(1+ m)Y1p −zm(2+ m)3 1}
. (41)

The dynamic vibration absorber in the TDOF system with two masses and three
springs is designed optimally by the following procedures: (1) the mass of the
dynamic vibration absorber, M2(m), and the amplitude limit of the main system,
Y1p , are assumed; (2) the spring constant of the dynamic vibration absorber, k3,
for m and Y1p assumed previously, is estimated by equation (36); (3) the spring
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constant of the connecting spring, k2, for m and k3 is estimated by equation (34);
and (4) the damping coefficient c2 of the connecting damper is estimated by
equations (39)–(41).

The tuning method for the shell-type dynamic absorber for control of the jth
mode of the main shell is given by control of r1j , using the tuning conditions of
the dynamic absorber in the TDOF system mentioned previously, and is shown
hereafter.

(1) The ratio of the mass of the main shell to that of the dynamic absorbing
shell, a=m2/m1, and the limit amplitude at a given point (x0, y0) of the main shell,
dmax , are set before beginning the calculation. In this case, the mass ratio
m=M2/M1 and the static displacement of the main system, yst , in the TDOF
system, shown in Figure 4, are expressed from equations (31), (32), (35) and (38)
as:

m=
M2

M1
=

m2

m1
= a (42)

and

yst =
P0

k1
=

1
gm1v

2
1j 6PxUj (r, s)+PyVj (r, s)+PzWj (r, s)7. (43)

Displacement of a given point on the main shell in a vibrating state, d(x0, y0, t),
is denoted approximately from equations (33) and (37) as:

d(x0, y0, t)1Dj (x0, y0)r1j EDj (x0, y0) Re (r1j )=Dj (x0, y0)Y1pyst E dmax , (44)

in which

Dj (x0, y0)=zUj (x0, y0)2 +Vj (x0, y0)2 +Wj (x0, y0)2. (45)

Accordingly, the non-dimensional amplitude of the main system in the TDOF
system, Y1p , is given as follows:

dmax

Dj (x0, y0)yst
=

gm1v
2
1jdmax

(PxUj (r, s)+PyVj (r, s)+PzWj (r, s))Dj (x0, y0)
eY1p eX2+ m

m
.

(46)

(2) When m and Y1p in the TDOF system are obtained by equations (42) and
(46), the flexural and extensional rigidities of the dynamic absorbing shell, D2 and
K2, are given from equations (31), (32), (15) and (36) as:

D2 =D1m01−
1

Y1pX2+ m

2 1 (47)

and

K2 =K1m01−
1

Y1pX2+ m

2 1. (48)
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Figure 4. Two-degree-of-freedom system for the jth mode of a main shell with shell-type dynamic
absorber.

(3) The spring constants of the connecting springs, k and k�z , are given by
equations (31), (32) and (34) as:

k=
m1v

2
1j zm(2+ m)

Y1p (1+ m)2 (49)

for the uniformly distributed connecting springs and

k�z =
m1v

2
1j zm(2+ m)

Y1p (1+ m)2 dxdy (50)

for the concentrated connecting springs.
(4) Damping coefficients of the connecting dampers, c and c̄z , are given from

equations (31), (32) and (39) as:

c=2mhm1v1j (51)

for the uniformly distributed connecting dampers and

c̄z =2mhm1v1jdxdy (52)

for the concentrated connecting dampers, in which h is estimated by equations (40)
and (41).

4. NUMERICAL INVESTIGATIONS

Two platelike shallow cylindrical shells with the geometrical and structural
constants shown in Table 1, one supported simply at the circumference and the
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other fixed, were chosen for numerical investigations. Dynamic characteristics of
the shells are illustrated in Figures 5 and 6. In numerical investigations, the
shell-type dynamic absorber with uniformly distributed connecting springs and
dampers in the vertical and two horizontal directions of the shell, and the
shell-type dynamic absorber with several sets of concentrated connecting springs
and dampers in the vertical direction, were considered and were tuned using the
optimum tuning method presented here. The usefulness of the shell-type dynamic
absorbers and of the tuning methods presented here was demonstrated by
illustrating the resonance curves of the main shells with the above shell-type
dynamic absorbers. Moreover, changes in the suppressing effect on the vibration,
due to variation in the arrangement of concentrated connecting springs and
dampers, were investigated.

The resonance curves of the main shells, illustrated from the following numerical
investigations, are dynamic responses of the vertical displacement at a loop point
of the 1st mode of the main shell under a harmonic load acting on the same point.
The loading states of the main shells are shown in Figures 5 and 6. The resonance
curves of the dynamic absorbing shells are dynamic responses of the vertical
displacement at a point right under the loading point of the main shell.

In calculating the dynamic responses, the displacements of the main shell with
the uniformly distributed connecting springs and dampers were obtained from the
partial sum of the 30 terms in equation (16) with function r1j obtained from
equations (19) and (20). The displacements of the main shell with the concentrated
connecting springs and dampers were calculated from the partial sum of the 30
terms in equation (16) with function r1j obtained from equations (29) and (30). In
the figures illustrated below, the ordinates represent non-dimensional dynamic
responses w1max /w1st and w2max /w1st , in which w1max and w2max are the maximum
dynamic displacements of the main and the dynamic absorbing shells under a
periodic load, and w1st is the static displacement of the main shell under the same
load. The abscissas represent the non-dimensional exciting frequency v0/v11 in
which v0 is the frequency of excitation and v11 is the natural circular frequency
of the 1st mode of the main shell.

4.1.      -    

    

The shell-type dynamic absorbers with uniformly distributed connecting springs
and dampers, and the ones with 6×6 sets of concentrated connecting springs and
dampers, were designed using the tuning method proposed in this paper, for

T 1

Geometrical and structural constants of the main shell

Width× length (a× b) (cm) 150×150
Radius of curvature (R) (cm) 286·25
Mass per unit area (m1) (Ns/cm) 2·91×10−5

Flexural rigidity (D1) (Ncm) 7·21×103

Extensional rigidity (K1)(N/cm) 8·65×104
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Figure 5. Natural modes and frequencies of the main shell supported simply at the circumference
and loading condition.
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Figure 6. Natural modes and frequencies of the main shell fixed at the circumference and loading
condition.
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T 2

Geometrical and structural constants of the dynamic
absorbing shell

Mass per unit area (m2) (Ns/cm) 5·52×10−6

Flexural rigidity (D2) (Ncm) 3·79×102

Extensional rigidity (K2) (N/cm) 4·55×103

control of the 1st mode of the main shell under the condition that the mass ratio
m=0·2 and the magnification factor Y1p =4·0. The structural constants of the
dynamic absorbing shells are shown in Table 2 and the characteristic constants
of the connecting springs and dampers are shown in Table 3. Spring constant k�z

and damping coefficient c̄z were estimated from equations (50) and (52)
determining the area (dx dy) of each section. This was obtained by dividing the
length and the width of the main shell into six equal parts, as is shown in pattern
A in Figure 9. Concentrated springs and dampers with the above characteristics
were attached to the center of each section.

The resonance curves of the shallow cylindrical main shell and the dynamic
absorbing shell, which are interconnected with uniformly distributed connecting
springs and dampers, under a harmonic load acting on a loop point of the 1st
mode of the main shell (as shown in Figures 5 and 6) are illustrated in Figures
7 and 8. Figure 7 shows the resonance curves of the shell simply supported at the
circumference and Figure 8 shows those of the shell fixed at the circumference.
Figures 7(b) and 8(b) are the resonance curves of the vertical displacement at a
loop point of the 1st mode of the main shell with the shell-type dynamic absorber,
and Figures 7(c) and 8(c) are the resonance curves of the vertical displacement at
a point on the dynamic absorbing shell, which is just under the loading point of
the above main shell. The resonance curves of the main shells without the dynamic
absorber are illustrated in Figures 7(a) and 8(a) in order to make the suppressing
effect of the shell-type dynamic absorber clear by comparison with the resonance
curves in Figures 7(b) and 8(b). In Figures 7 and 8, the resonance curves of the
main shell with damping constant h=0·01 for each mode of vibration are also
illustrated by dotted lines. It is obvious from these that the shell-type dynamic
absorber is useful for suppression of vibration of the shallow shell, the tuning

T 3

Spring constants and damping coefficients of the shell-type dynamic absorbers

Supported simply Fixed at
at circumference circumference

Spring constant (k)* (N/cm3) 9·83×10−2 12·96×10−2

Spring constant (kz )** (N/cm) 6·14×101 8·10×101

Damping coefficient (c)* (Ns/cm3) 9·85×10−5 11·31×10−5

Damping coefficient (cz )** (Ns/cm) 6·16×10−2 7·07×10−2

* Uniformly distributed spring and damper.
** Concentrated spring and damper.
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Figure 7. Resonance curves of the main shell and the dynamic absorbing shell supported simply
at the circumference: (a) main shell without shell-type dynamic absorber; (b) main shell with
shell-type dynamic absorber; (c) dynamic absorbing shell attached to the main shell. ——, Without
damping; · · · · · · , with damping (h=0·01).

method presented here is applicable and the responses in the resonance of the main
shell are reduced by structural internal damping.

The resonance curves of the main and dynamic absorbing shells which are
interconnected with 6×6 sets of concentrated connecting springs and dampers in
the vertical direction, corresponding to the resonance curves in Figures 7 and 8,
were calculated in order to investigate the applicability of the approximate tuning
method. Those resonance curves of the main shells and the dynamic absorbing



0

7

6

5

4

3

2

1

(a)

(w
1m

a
x
/w

1s
t)

0

7

6

5

4

3

2

1

(b)

(w
1m

a
x
/w

1s
t)

0

7

6

5

4

3

2

1

100 2 4 6 8

(c)

(w
2m

a
x
/w

1s
t)

0/ 11(            )

1st mode

5th mode

8th mode

10th mode
9th mode6th

2

      263

shells are not illustrated here, because the shapes of the resonance curves of the
main shells were almost the same as those in Figures 7(b) and 8(b), and those of
the dynamic absorbing shells were the same as those in Figures 7(c) and 8(c).
However, the peak values on the resonance curves of the main shell and the
dynamic absorbing shell in the vicinity of v0/v11 =1·0 are shown in Table 4. It
is evident from Table 4 that the shell-type dynamic absorber with 6×6 sets, or
larger sets of concentrated connecting springs and dampers, being tuned by the

Figure 8. Resonance curves of the main shell and the dynamic absorbing shell fixed at the
circumference: (a) main shell without shell-type dynamic absorber; (b) main shell with shell-type
dynamic absorber; (c) dynamic absorbing shell attached to the main shell. ——, Without damping;
· · · · · · , with damping (h=0·01).
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T 4

Peak values of dynamic responses of the main shells and the dynamic absorbing shells
in the vicinity of v0/v11 =1·0

Shell supported simply Shell fixed
at the circumference at the circumference

ZXXXXXCXXXXXV ZXXXXXCXXXXXV
Dynamic Dynamic
absorbing absorbing

Springs and dampers Main shell shell Main shell shell

Uniformly distributed 2·594 4·456 2·541 4·450
spring and damper
Concentrated spring 2·595 4·256 2·530 4·232
and damper

approximate tuning method presented here, is applicable for controlling the
vibration of the shallow shell. This fact shows that the horizontal connecting
springs and dampers do not have a suppressing effect on vibration of the shallow
shell with the geometrical and structural constants shown in Table 1.

4.2.         

   

The behavior of the suppressing effect on the vibration of the shallow main shell,
which was simply supported at the circumference due to variations in the
arrangement of the concentrated connecting springs and dampers was also
investigated. Five patterns of arrangement of the concentrated springs and
dampers, as shown in Figure 9, were considered in this investigation. Pattern A
shows a close arrangement of the concentrated connecting springs and dampers,
patterns B and C show loose arrangements in the x and y directions, and patterns
D and E show loose arrangements at the circumference where the dynamic
displacement is small.

The resonance curves of the shallow shells with the shell-type dynamic vibration
absorber with concentrated connecting springs and dampers arranged in patterns
mentioned above are illustrated in Figure 10. The resonance curves are response
curves of the vertical displacements at a loop point of the 1st mode of the main
shell under a harmonic load acting on the same point (as shown Figure 5). Figure
10(a) shows the resonance curve of the main shell with a shell-type dynamic
absorber with uniformly distributed connecting springs and dampers. Figures
10(b)–(f) show those of the main shell with the shell-type dynamic absorber, having
concentrated connecting springs and dampers with five patterns of arrangement,
as shown in Figure 9. The resonance curves of the main shell with damping
constant h=0·01 for each mode of vibration are also illustrated by dotted lines.

The shell-type dynamic absorber with connecting springs and dampers with the
arrangement of pattern A has the same suppressing effect as the one with
uniformly distributed connecting springs and dampers, as shown in Figure 10(a)
and (b). The change of the peak in the vicinity of the 1st natural circular frequency
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Figure 9. Patterns of arrangement of the concentrated connecting springs and dampers in the
vertical direction. (a) Pattern A; (b) pattern B; (c) pattern C; (d) pattern D; (e) pattern E.

is shown in Table 4. The shell-type dynamic absorber, with connecting springs and
dampers with the arrangement of pattern B, has no effect on the suppression for
the 5th mode because there are not many connecting springs and dampers
arranged on the loop line (parallel to the nodal line) of the 5th mode. However,
the suppressing effects on the 7th, 8th and 10th modes show, because there are
many connecting springs and dampers on the loop line of those modes. The
shell-type dynamic absorber, with connecting springs and dampers with the
arrangement of pattern C, has no effect on the 1st and 7th modes because the
concentrated springs and dampers are arranged in the position (line) away from
the loop line of those modes. The suppressing effect of the shell-type dynamic
absorber with connecting springs and dampers with the arrangement of pattern
D on the 1st and 8th modes are better than those of pattern E, because
concentrated springs and dampers at the circumference of the arrangement of
pattern D are on the loops of the 1st and 8th modes.

From the above numerical examples, the following facts were revealed: (1) the
shell-type dynamic absorber with 6×6 sets of concentrated connecting springs
and dampers in the vertical direction has the same suppressing effect as that with
uniformly distributed connecting springs and dampers; and (2) the suppressing
effect on vibration decreases when the number of sets of the concentrated
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Figure 10. Resonance curves of the main shell with shell-type dynamic absorber: (a) uniformly
distributed connecting springs and dampers; (b) concentrated connecting springs and dampers with
pattern A; (c) concentrated connecting springs and dampers with pattern B; (d) concentrated
connecting springs and dampers with pattern C; (e) concentrated connecting springs and dampers with
pattern D; (f) concentrated connecting springs and dampers with pattern E. ——, Without damping;
· · · · · · , with damping (h=0·01).

connecting springs and dampers (the number of divisions of the shell) decreases,
and when the concentrated springs and dampers are arranged away from the
loops of the modes.

5. CONCLUDING REMARKS

A shell-type dynamic vibration absorber for controlling the vibration of the
shallow shell (main shell) under a harmonic load was proposed, which consists of
a shallow shell (dynamic absorbing shell) under the same boundary condition as
the main shell, and has connecting springs and dampers between both shells. For
practical use, the connecting springs and dampers were arranged in a concentrated
fashion and an approximate tuning method for this new dynamic vibration
absorber was also developed.
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The equation of motion of the main shell with the shell-type dynamic absorber
with uniformly distributed connecting springs and dampers, rearranged using the
modal co-ordinates of the main shell, was shown to be identical to that of the
two-degree-of-freedom system (TDOF system) with two masses and three springs.
The equation of motion of the shell with a shell-type dynamic absorber with
concentrated connecting springs and dampers in the vertical direction was also
shown to be similar to that of the TDOF system. An optimum tuning method for
the shell-type dynamic absorber with uniformly distributed connecting springs and
dampers was presented by applying the optimum tuning conditions for a dynamic
absorber (subsystem) in a TDOF system with two masses and three springs,
obtained by the Den Hartog method. Subsequently, an approximate tuning
method for the shell-type dynamic absorber with concentrated connecting springs
and dampers was also presented.

From numerical investigation, the following facts were obtained: (1) for
suppression of vibration of the shallow shell with and without structural internal
damping, the shell-type dynamic vibration absorber with uniformly distributed
connecting springs and dampers is useful and the tuning method presented here
is applicable; (2) the shell-type dynamic absorbers with 6×6 sets or more sets of
concentrated connecting springs and dampers in the vertical direction are useful,
as well as is the shell-type dynamic absorber with uniformly distributed connecting
springs and dampers. The approximate tuning method proposed here is also
applicable; (3) the accuracy of the approximate tuning method is improved when
the number of sets of concentrated connecting springs and dampers is increased
and the concentrated connecting springs and dampers are arranged closely in loop
positions where the dynamic displacement is large.
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